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Abstract. A sub-field of process mining, conformance checking, quan-
tifies how well the process behavior of a model represents the observed
behavior recorded in a log. A stochastic-aware perspective that accounts
for the probability of behavior in both model and log is necessary to
support conformance checking. However, existing stochastic conformance
checking measures are not comparable for a broad framework that in-
cludes log-to-log (L2L), log-to-model (L2M), and model-to-model (M2M)
comparison settings. Therefore, we propose a stochastic conformance
checking measure based on the Jensen-Shannon Distance (JSD), which
interprets models and logs as probability distributions over traces. It
can be applied to perform L2L, L2M, and M2M conformance, while the
latter requires approximation. Notably, it is the only known stochastic
conformance measure that is a metric. JSD has been implemented and is
publicly available. Our quantitative evaluations show the feasibility of
computing JSD over real-life event logs, and that it provides diagnostic
results different from those of existing measures. Moreover, experiments
in the M2M setting confirm that our measure can be approximated using
unbiased sampling.
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1 Introduction

Information systems in modern organizations record process executions performed
by employees, managers, and customers as event data. Such data can be extracted
as an event log, which is a collection of recorded traces, where each trace is a
sequence of activities observed in a process execution. By leveraging the historical
event data in event logs, process mining studies ways to optimize real-world
processes [1].

In process mining, process models are used to better understand the process
and identify issues. Conformance checking relates events in the event log to
activities in the process model to identify commonalities and differences between
them, i.e., log-to-model comparison (L2M). For example, the results of L2M
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Fig. 1: Three settings of stochastic conformance checking: L2L, L2M, and M2M.

conformance checking can be used to inform auditing efforts. Additionally, con-
formance checking may involve model-to-model comparisons (M2M) [1, p265], for
instance, to compare models discovered from event logs recorded in geographically
different regions. Furthermore, log-to-log conformance checking (L2L) compares
two logs directly with one another. L2L conformance checking can be used for
detecting process drift [28], which refers to the problem of finding changes in a
process over time.

In real-life processes, certain behavior can occur more frequently than the
other. Consider two event logs [⟨a, b⟩50, ⟨b, a⟩50⟩] and [⟨a, b⟩80, ⟨b, a⟩20⟩], which
have the same trace variants but differ in the frequency of observations of these
variants. As these logs are different, this should be reflected in conformance
checking measurements. As for M2M conformance checking, one can detect and
quantify changes in stochastic behavior by comparing the latest discovered model
with a previous version of the model. Similarly, event logs that cover long periods
or merge data from multiple organizations may contain different versions of
process behavior. By applying stochastic conformance for L2L settings, one can
avoid misleading conclusions when addressing process drift. We illustrate these
settings of stochastic conformance checking in Fig. 1.

None of the existing stochastic conformance checking techniques support all of
L2L, L2M and M2M, or the measure results in values that are incomparable across
the three settings [20,22,25]. In this paper, we propose a stochastic conformance
checking metric based on the Jensen-Shannon Distance (JSD) [13]. This metric
interprets process behavior in an event log or a stochastic process model as a
probability distribution over traces. JSD can be applied for stochastic conformance
checking across three settings: i) L2L setting, ii) L2M setting where the stochastic
model has a finite state space, and iii) M2M setting that relies on unbiased
sampling.

The JSD metric has been implemented and is publicly available 4. We com-
pared it quantitatively with existing stochastic conformance techniques on several
real-life event logs and stochastic process models, which demonstrated that
JSD measurements can lead to different conclusions. Moreover, for the M2M

4 https://bpm.rwth-aachen.de/ebi



setting, we evaluated the influence of the sample size and confirmed that the
approximation converges with the growth of simulated event logs.

The remainder of the paper proceeds as follows. We first discuss related work
in Section 2 and introduce preliminaries in Section 3. In Section 4, we discuss
how JSD can be applied in L2L, L2M, and M2M settings, after which we evaluate
it in Section 5. Finally, Section 6 concludes the paper.

2 Related Work

Recently, several techniques for stochastic process discovery have been proposed,
including the weight estimation techniques that discover a stochastic labeled
Petri net (SLPN) from the input event log and control flow model [7,18,6],
and techniques that directly construct a stochastic model from an input event
log [26,3].

Conformance checking for non-stochastic models has been extensively dis-
cussed [8]. Van der Aalst [2] emphasized the importance of considering prob-
abilities in conformance checking. Entropic Relevance (ER) [25] computes the
average number of bits to compress each log trace by leveraging the trace likeli-
hood information in a stochastic model. Entropy Recall (E-Recall) and Entropy
Precision (E-Precision) [20] quantifies frequent and rare deviations between an
event log and a stochastic model by treating both log and model as stochastic
automata, and comparing the entropy of these automata with the entropy of a
third automaton that represents the joint behavior. Probabilistic Alignments [4]
consider the frequencies of traces in logs and calculate the likelihood of a move
being synchronous or not in the stochastic process model. Bogdanov et al. [5]
proposed an alignment-based algorithm that computes the conformance cost
between a model and a stochastically known log [14]. Alpha Precision [10] uses
the stochastic language of the model and the event log, and inferences about the
underlying system that generated the log. Another recent work proposed unit
Earth Movers’ Stochastic Conformance (uEMSC) and Earth Movers’ Stochastic
Conformance (EMSC) [16] that measure the effort of transforming the distri-
bution of traces in the log to that described in the stochastic model. Although
EMSC can be applied to compute L2M and M2M conformance, it relies on a
biased truncation to sample traces from models.

These stochastic conformance checking techniques either only support L2M
settings, or the measures provide values that are incomparable across the L2L,
L2M, and M2M settings.

3 Preliminaries

Given a set of elements S, a multiset X : S → N maps the elements of S to the
natural numbers, such that X allows for multiple instances for each of its elements.
For example, X = [a, b4, c5] is a multiset with ten elements: one a, four b’s, and
five c’s. The union of two multisets X1 and X2 is denoted as X1 ⊎X2. Multiset



subset X1 F X2 denotes ∀s∈SX2(s) ≥ X1(s). If X1 F X2, then X3 = X2 \-X1 is
the multiset difference, such that ∀s∈SX3(s) = X2(s)−X1(s).

An event log is a collection of traces, which are sequences of activities. We
can transform an event log into a stochastic language by dividing the frequency
of each trace by the total number of traces.

Definition 1 (Stochastic Languages). Let Σ be a finite set of activities and
let Σ∗ be the set of all finite sequences of activities ( traces) over Σ. Then, a
stochastic language l is a function that maps each trace in Σ∗ to a probability,
that is, l : Σ∗ → [0, 1] such that

∑
σ∈Σ∗ l(σ) = 1.

A stochastic language assigns probabilities to traces so that the assigned prob-
abilities sum up to one. Inherently, an event log denotes a finite stochastic
language. For instance, given two event logs L1 = [⟨a, b⟩3, ⟨b, a⟩2] and L2 =
[⟨a, b⟩80, ⟨a, b, b⟩20], their finite stochastic languages are l1 = [⟨a, b⟩0.6, ⟨b, a⟩0.4]
and l2 = [⟨a, b⟩0.8, ⟨a, b, b⟩0.2], respectively.

A stochastic process model is a model that describes a stochastic language.
We introduce two types of stochastic process models: stochastic labeled Petri
nets and stochastic deterministic finite automata.

Definition 2 (Stochastic Labeled Petri Nets). Let Σ be a finite set of
activities, a stochastic labeled Petri net (SLPN) is a tuple (P, T, F,w, ρ,m0) where
P is a finite set of places, T is a finite set of transitions such that P ∩ T = ∅,
F ⊆ (P × T ) ∪ (T × P ) is a flow relation, w : T → R0 is a weight function,
ρ : T → Σ ∪ {τ} is a labeling function, and m0 is the initial marking.

A marking in an SLPN is a multiset of places. An SLPN starts its execution
from its initial marking. Let •t = [p | (p, t) ∈ F ] be the set of places directly
before transition t, t• = [p | (t, p) ∈ F ] be the set of places directly after t, and
Tm = {t | •t F m} denote all enabled transitions in marking m. An enabled

transition t ∈ Tm can fire with probability p(t | m) = w(t)
Σt′∈Tm

w(t′) , which results

in a new marking m′ = m ⊎ t• \- •t.
A path is a sequence of transitions ⟨t1, . . . , tn⟩ that are fired along with

a sequence of markings ⟨m0, . . . ,mn⟩, such that ∀1≤i≤n
•ti F mi−1 ∧ mi =

mi−1 ⊎ t•i \- •ti and Tmn = ∅ for mn. That is, a path brings the model from
its initial marking m0 to a deadlock marking, in which no marking is enabled.
The probability of the path ⟨t0, . . . , tn⟩ is

∏
0≤i≤n p(ti | mi−1). A transition t

with ρ(t) = τ is unobservable, or silent. The projection of a path by labeling
function ρ on the non-τ transitions is a trace, and there may be several (even
countably-infinite many [19]) paths that project to the same trace.

For instance, M1 in Fig. 2 is an SLPN with two silent transitions τ1 and
τ2 and three transitions with labels a, b, and c. ⟨a, τ1, τ2, τ1, b⟩ and ⟨a, τ1, b⟩ are
two paths that correspond to the trace ⟨a, b⟩. M1 can generate infinitely many
different traces, thus its stochastic language is infinite.

Definition 3 (Stochastic Deterministic Finite Automaton). A stochastic
deterministic finite automaton (SDFA) A = (S,Q, δ, p, s0) consists of a finite set
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of states S, with s0 ∈ S the initial state, a set of actions Q ⊆ V , a transition
function δ : S ×Q → S, and a transition probability function p : S ×Q → [0, 1]
such that for each state s ∈ S, it holds that

∑
q∈Q p(s, q) ≤ 1.

For example, Fig. 3 shows an SDFA using graphical notation. The states
and transition function are visualized as circles and arcs, respectively. It has
two states, s0 and s1. The initial state is s0, and its transition function is
defined by {(s0, a, s1), (s1, b, s1)}. Arc from s0 to s1 with label a:1 specifies that
(s0, a, s1) ∈ δ and (s0, a, 1) ∈ p. Likewise, arc from s1 to s1 with label b:0.9
specifies that (s1, b, s1) ∈ δ and (s1, b, 0.9) ∈ p.

By converting event logs and stochastic models to stochastic languages, we
reduce stochastic conformance to the problem of computing the similarity of
two stochastic languages. Given two stochastic languages, the Kullback-Leibler
Divergence quantifies the difference between the probability distributions over
traces in these languages.

Definition 4 (Kullback-Leibler Divergence [9]). Let Σ be a finite set of
activities, Σ∗ be the set of all finite sequences of activities ( traces) over Σ, and
l and l′ be two stochastic languages over Σ. The Kullback-Leibler Divergence
(KLD) of l with respect to l′ is defined as:

kld(l, l′) =
∑
σ∈Σ∗

l(σ) log2
l(σ)

l′(σ)
.

We accept that 0 log 20 = 0. KLD is not symmetric, as kld(l, l′) may not
equal kld(l′, l). If one trace has a zero probability in l′ and a non-zero probability
in l, kld(l, l′) is undefined. The Jensen-Shannon Distance (JSD) overcomes this
limitation by comparing two stochastic languages based on their average stochastic
language.

Definition 5 (Average Stochastic Languages). Let Σ be a finite set of
activities, Σ∗ be the set of all finite sequences of activities ( traces) over Σ, and l
and l′ be two stochastic languages. The stochastic languages l′′ for which it holds
that ∀σ∈Σ∗ l′′(σ) = 0.5(l(σ) + l′(σ)), is the average stochastic language of l and
l′ denoted by avg(l, l′).

For example, avg(l1, l2) = [⟨a, b⟩0.7, ⟨b, a⟩0.2, ⟨a, b, b⟩0.1] is the average stochastic
language of l1 and l2. Given two stochastic languages, their Jensen-Shannon
Distance is defined as follows.



Definition 6 (Jensen-Shannon Distance [13]). Let l and l′ be two stochastic
languages. The Jensen-Shannon Distance (JSD) between l and l′ is defined as:

jsd(l, l′) =

√
kld(l, avg(l, l′)) + kld(l′, avg(l, l′))

2

JSD is bound between 0 and 1. Moreover, JSD using a square root is a
metric [13], thus for any stochastic languages l, l′ and l′′, we have: i) Reflexivity:
jsd(l, l′) = 0 ⇔ l = l′, ii) Symmetricity: jsd(l, l′) = jsd(l′, l), and iii) Triangle
inequality: jsd(l, l′) + jsd(l′, l′′) ≥ jsd(l, l′′).

4 Stochastic Conformance Checking with JSD

In this section, we discuss how to compute JSD in L2L, L2M, and M2M settings.

4.1 Log-to-Log Conformance

In the L2L setting, given that a log induces a finite stochastic language, and
the average stochastic language of two logs is also finite, one can directly apply
Definition 6. Let l and l′ be the stochastic languages of two event logs, L>0 =
{σ | l(σ) > 0} and L′

>0 = {σ | l′(σ) > 0}, it holds that:

jsd(l, l′) =

√
kld(l,avg(l, l′)) + kld(l′, avg(l, l′))

2
, where: (1)

kld(l, avg(l, l′)) =
∑

σ∈L>0

l(σ) log2
l(σ)

avg(l, l′)(σ)
and,

kld(l′, avg(l, l′)) =
∑

σ∈L′
>0

l′(σ) log2
l′(σ)

avg(l, l′)(σ)

As l and l′ for both event logs are finite, the terms in Eq. (1) are finite.

We adopt l(σ) log2
l(σ)

avg(l,l′)(σ) = 0 if l(σ) = 0, and l′(σ) log2
l′(σ)

avg(l,l′)(σ) = 0 if

l′(σ) = 0.
For instance, given the stochastic languages l1, l2, for logs L1 and L2, we have:

kld(l1, avg(l1, l2)) = 0.6 log2
0.6
0.7 + 0.4 log2

0.4
0.2 ≈ 0.267 and kld(l2, avg(l1, l2)) =

0.8 log2
0.8
0.7+0.2 log2

0.2
0.1 ≈ 0.354. Hence, the JSD between L1 and L2 is jsd(l1, l2) =√

0.267+0.354
2 ≈ 0.575.

4.2 Log-to-Model Conformance

The definition of JSD relies on the average stochastic language of two input
stochastic languages. Hence, the average stochastic language may be infinite.
However, as an event log always corresponds to a finite stochastic language,
we can avoid explicitly constructing the potentially infinite average stochastic



language of an event log and a stochastic model with a finite state space by
rewriting Definition 6.

Let l and m be the stochastic language of the input event log and the
stochastic language of the stochastic model, respectively. Based on Definition 4
and Definition 5, we have:

jsd(l,m) =

√∑
σ∈Σ∗ n(σ)

2
, where: (2)

n(σ) = l(σ) log2
2l(σ)

l(σ) +m(σ)
+m(σ) log2

2m(σ)

l(σ) +m(σ)
.

Let Σ∗
0 = {σ | l(σ) = 0 ∧m(σ) = 0} denote the set of traces that are in neither

the log nor the model. For all σ ∈ Σ∗
0 , we have n(σ) = 0. Hence, we only consider

the traces in Σ∗\Σ∗
0 , i.e., traces that are observed in l or m.

It holds that Σ∗\Σ∗
0 = Σ∗

1 ∪Σ∗
2 ∪Σ∗

3 where Σ∗
1 = {σ | l(σ) > 0 ∧m(σ) > 0},

Σ∗
2 = {σ | l(σ) > 0 ∧ m(σ) = 0}, and Σ∗

3 = {σ | l(σ) = 0 ∧ m(σ) > 0}. By
splitting set Σ∗\Σ∗

0 into the union of three subsets, n(σ) in Eq. (2) can be written
as a piecewise function:

n(σ)=


l(σ) log2

2l(σ)

l(σ)+m(σ)
+m(σ) log2

2m(σ)

l(σ)+m(σ)
, if σ ∈ Σ∗

1

l(σ), if σ ∈ Σ∗
2

m(σ), if σ ∈ Σ∗
3

Then, one can rewrite Eq. (2) as follows:

jsd(l,m) =

√
j1(l,m) + j2(l,m) + j3(l,m)

2
, where: (3)

j1(l,m) =
∑
σ∈Σ∗

1

l(σ) log2
2l(σ)

l(σ)+m(σ)
+m(σ) log2

2m(σ)

l(σ)+m(σ)
,

j2(l,m) =
∑
σ∈Σ∗

2

l(σ) = 1−
∑
σ∈Σ∗

1

l(σ), and

j3(l,m) =
∑
σ∈Σ∗

3

m(σ) = 1−
∑
σ∈Σ∗

1

m(σ).

First, we query the model for the probability of each log’s trace leveraging
the technique discussed in [19] for j1(l,m). Note that this step is non-trivial,
as there can be an infinite number of SLPN paths corresponding to one trace.
Therefore, we avoid explicitly computing an infinite average stochastic language
for l and m. For instance, for L2 and M1, we first calculate the probability of
each trace from L2 in model M1, that is, m1(⟨a, b⟩) = 0.5, m1(⟨b, a⟩) = 0. Given
that l2(⟨a, b⟩) = 0.8, we have: j1(l2,m1) = 0.8 log2

0.8
0.65 + 0.5 log2

0.5
0.65 ≈ 0.050.

Then, the second term j2(l2,m1) = 1 − 0.8 = 0.2, as trace ⟨b, a⟩ is only
observed in log. The third term j3(l2,m1) = 1− 0.5 = 0.5 is the probability sum
of traces generated by M1 while not observed in L2. Finally, the JSD between

L2 and M1 is jsd(l2,m1) =
√

0.050+0.2+0.5
2 ≈ 0.613.
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Fig. 4: JSD approximation for the M2M setting.

4.3 Model-to-Model Conformance

In the M2M setting, given two SDFAs, if their average stochastic language is an
SDFA, then it is possible to transform the computation of JSD by leveraging
Definition 5. Let m, m′, m′′ be three SDFAs, such that m′′ is the SDFA that
induces the average stochastic language of m and m′. The JSD of m and m′ is:

jsd(m,m′) =

√
kld(m,m′′) + kld(m′,m′′)

2
. (4)

Applying Eq. (4) relies on the average SDFA for two input SDFAs. However,
such an SDFA does not always exist [27]. Hence, in this paper, we do not attempt
to find a general strategy to construct an average SDFA for two input SDFAs.
Instead, we approximate the true value of JSD by sampling, as illustrated in
Fig. 4. For each model, we generate a collection of traces that represent the
model’s process behavior. In each sampling iteration, a random walk is performed
to generate a trace from the model. During a random walk in an SLPN, the
probability of firing an enabled transition depends only on the current marking.
In an SDFA, the probability of taking the next action depends only on the current
state. The walk continues until it reaches the final marking for SLPN or the final
state for SDFA, and a trace is generated. Furthermore, each trace is generated
independently. Subsequently, the collection of sampled traces is used to construct
a finite stochastic language.

The difference between our approach and the truncation technique in [22] is
that traces are generated by their probability rather than length, as the truncation
approach favors shorter traces over lengthier ones. Thereby, an approximated
JSD value can be computed following Eq. (1) using event logs sampled from the
models.

5 Evaluation

JSD has been implemented and is publicly available [23]. First, we compare JSD
with existing stochastic conformance checking measures. Then, we study the
implication of sample size when approximating JSD in the M2M setting.



Table 1: Experiment results of different stochastic conformance values with row-wise
ranking. The errors for E-Recall and E-Precision were due to an unknown exception.

Event Log Measure d-uemsc d-er d-freq d-align d-scale

Road [24] uEMSC 0.408 (1) 0.221 (2) 0.010 (5) 0.219 (3) 0.112 (4)
EMSC 0.731 (3) 0.758 (1) 0.641 (5) 0.735 (2) 0.658 (4)
ER 8.302 (4) 6.685 (1) 23.296 (5) 6.698 (2) 7.731 (3)
E-Recall 0.909 (1) 0.909 (1) Error 0.909 (1) 0.836 (4)
E-Precision 0.783 (1) 0.692 (3) Error 0.707 (2) 0.512 (4)
JSD 0.338 (1) 0.389 (3) 0.818 (5) 0.387 (2) 0.514 (4)

Offer [12] uEMSC 0.656 (1) 0.583 (2) 0.539 (4) 0.581 (3) 0.581 (3)
EMSC 0.916 (1) 0.910 (2) 0.901 (5) 0.910 (2) 0.910 (2)
ER 3.363 (4) 3.209 (1) 8.429 (5) 3.210 (2) 3.214 (3)
E-Recall 0.996 (1) 0.996 (1) 0.996 (1) 0.996 (1) 0.923 (5)
E-Precision 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1)
JSD 0.114 (4) 0.108 (1) 0.208 (5) 0.108 (1) 0.109 (3)

Request [11] uEMSC 0.778 (1) 0.766 (2) 0.005 (5) 0.712 (3) 0.418 (4)
EMSC 0.886 (2) 0.885 (3) 0.457 (5) 0.897 (1) 0.644 (4)
ER 8.465 (2) 8.368 (1) 28.471 (5) 8.604 (3) 11.389 (4)
E-Recall 0.764 (1) 0.764 (1) 0.764 (1) 0.764 (1) 0.000 (5)
E-Precision 1.000 (1) 1.000 (1) 0.003 (4) 0.814 (3) 0.000 (5)
JSD 0.091 (2) 0.072 (1) 0.995 (5) 0.118 (3) 0.582 (4)

5.1 Quantitative Comparison

In this experiment, we compare the result of JSD with other stochastic con-
formance checking measures using three publicly available event logs [24,12,11].
First, given an event log, Inductive Miner [17] is used to construct a control-flow
model. Next, we discover a stochastic model (SLPN) using stochastic discovery
techniques, including d-uemsc, d-er, d-freq, d-align, and d-scale [7,18]. Finally,
different measures have been applied to evaluate the stochastic conformance
between each log and SLPNs, namely uEMSC, EMSC, ER, E-Recall, E-Precision,
and JSD. The results are presented in Table 1. Note that for uEMSC, EMSC,
E-Recall, and E-Precision, a higher value indicates better stochastic conformance.
For distance measures ER and JSD, a lower value denotes a better conformance.

Overall, a model with a good uEMSC, EMSC, and ER also ranks higher for
JSD. Although there is no unanimous agreement across JSD and other measures
on the best stochastic models, there is partial agreement on the worst models.
Stochastic models discovered using d-freq and d-scale have lower stochastic
quality, as indicated by their ranks of JSD and other conformance measures.

When using the Spearman Correlation to examine the relationship between
JSD and other conformance measures, JSD does not present a strong positive
correlation with existing measures, as illustrated in Fig. 5. For instance, although
JSD is strongly correlated to uEMSC for logs Road and Request, this pattern
is not observed in log Offer. When comparing JSD and EMSC, a medium to



(a) Road [24].

(b) Offer [12].

(c) Request [11].

Fig. 5: Spearman correlation for stochastic conformance measures over different logs.



101 102 103 104
0

0.2
0.4
0.6
0.8
1

Sample size

J
S
D

(a) dfm&d-uemsc
and dfm&d-er.

101 102 103 104
0

0.2
0.4
0.6
0.8
1

Sample size

(b) dfm&d-uemsc
and dfm&d-freq.

101 102 103 104
0

0.2
0.4
0.6
0.8
1

Sample size

(c) dfm&d-uemsc
and dfm&d-align.

101 102 103 104
0

0.2
0.4
0.6
0.8
1

Sample size

(d) dfm&d-uemsc
and dfm&d-scale.

101 102 103 104
0

0.2
0.4
0.6
0.8
1

Sample size

(e) dfm&d-er and
dfm&d-freq.

101 102 103 104
0

0.2
0.4
0.6
0.8
1

Sample size

J
S
D

(f) dfm&d-er and
dfm&d-align.

101 102 103 104
0

0.2
0.4
0.6
0.8
1

Sample size

(g) dfm&d-er and
dfm&d-scale.

101 102 103 104
0

0.2
0.4
0.6
0.8
1

Sample size

(h) dfm&d-freq
and dfm&d-align.

101 102 103 104
0

0.2
0.4
0.6
0.8
1

Sample size

(i) dfm&d-freq
and dfm&d-scale.

101 102 103 104
0

0.2
0.4
0.6
0.8
1

Sample size

(j) dfm&d-align
and dfm&d-scale.

Fig. 6: Approximated JSD with sampling in the M2M settings.

high correlation is observed in all three logs. As E-Precision for log Offer is 1
for all models, it does not present any positive or negative correlation with JSD.
Therefore, stochastic conformance checking with JSD leads to conclusions that
are different from those of existing stochastic conformance measures.

5.2 Influence of Sample Size

In this evaluation, we study the influence of sample size on approximating JSD
between two SLPNs. We first constructed control-flow models with loops for log
Domestic [11] using Direct-Follow Miner (dfm) [21], and then discovered SLPNs
with d-uemsc, d-er, d-freq, d-align, and d-scale. We increased the number of
traces sampled from 10 to 8000 to study how the sample size influences returned
values. To reduce the effect of randomness, we repeat the computation 500 times
for each sample size and compute the average JSD across all the repetitions.

The results are shown in Fig. 6, in which the x-axis represents the sampled
trace size and the y-axis is the JSD value. The blue region represents the range of
JSD values obtained from repeated experiments. As the number of sampled traces
increases, the blue region gradually converges. Specifically, if the sample size is
small and insufficient traces are generated, the JSD values vary considerably.

JSD shows expected behavior with an increasing number of sampled traces.
The sampling we use is unbiased, i.e., it does not favor shorter traces over longer
ones like the truncation technique used in EMSC [22]. With a larger sample size,
loops are unfolded in the model with more traces generated, and the stochastic
language approaches the true trace distribution of the model.



6 Conclusion

This paper studies the applicability of Jensen Shannon Distance for stochastic
conformance checking. JSD is a metric that compares the trace distributions of two
stochastic languages with that of their average language. This distance measure
can be applied for log-to-log, log-to-model, and model-to-model conformance
checking, the latter setting in general requiring an approximation using, for
instance, an unbiased sampling presented in this work.

We evaluated the feasibility of JSD for conformance checking using real-
life event logs and stochastic process models discovered from these logs. The
comparison with existing stochastic conformance measures demonstrated that
JSD measurements may lead to different conclusions, an observation deserving of
further exploration in future works. In addition, we confirmed empirically that
the proposed approximation of model-to-model conformance converges with the
growth of simulated event logs.

The metric property of JSD can be useful in applications like searching for
similar models [15]. Another interesting direction for future work is to identify the
explicit construction of an average stochastic language, i.e., extend the measure
for accurate computation for subclasses of models (M2M). Finally, one can assess
whether JSD satisfies desired properties for stochastic conformance measures,
such as properties designed for stochastic recall and precision measures [20].
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